Fertility Medications

Monica Moore, MSN, RNC

Objectives

At the conclusion of this presentation, participants should be able to:

- Review the principles of superovulation
- Discuss the mechanism of action for oral meds lacksquare
- Explain the two different methods of pituitary suppression
- Compare and contrast 2 different medications utilized to trigger ovulation in IVF cycles.

Part 1: Hormone Levels in a Natural Cycle

Ovulation Induction and Superovulation

- Ovulation Induction
 - -Induce the development of at least one follicle (in anovulatory women) to provide an opportunity for pregnancy
- Superovulation (Controlled ovarian stimulation) -Increase the number of follicles recruited in

order to increase the opportunity for pregnancy

Hypothalamic-Pituitary-Ovarian Axis (HPO Axis)

PART 1: ORAL OVULATION INDUCTION AGENTS

Oral Ovulation Induction Agents

- Clomiphene Citrate (Clomid)
 - Only oral medication FDA approved for ovulation induction
 - -Approved for clinical use in US in 1967
- For anovulatory women, goal is to produce dominant follicle and ovulate
- In ovulatory women, goal is multifollicular response

Clomiphene Citrate (CC)

- Originally Breast Cancer Drug
 Chemically related to Tamoxifen
- Similar structure to estrogen
 - -Binds to and depletes estrogen receptors
 - The hypothalamus prevents accurate interpretation of circulating estrogen levels; perceives low levels, and stimulates gonadotropin release from the pituitary

CC-Mechanism of Action

CC-Mechanism of Action

Clomiphene Citrate

- Disadvantages:
 - High ovulatory, but low pregnancy rates (Dickey 1996;Gysler,1982)
 - Anti-estrogen effects on cervix, vagina, and endometrium (Speroff, 1994)
 - Possibly responsible for low pregnancy and higher miscarriage rates (Franks, et al, 1985)
 - –Long half-life (about 2 weeks)
 - Side effects related to anti-estrogenic effect and include vision changes, hot flashes, and irritability
 - More serious: ovarian torsion ;higher risk of twins; neoplasm?

Aromatase Inhibitors (Als)

- Inhibit aromatase e estrogen synthesis
- Originally used as a patients
- Unlike CC, do not le depletion

• Inhibit aromatase enzyme, resulting in reduction of

• Originally used as a therapy for breast cancer

• Unlike CC, do not lead to estrogen receptor

Estrogen Production

Aromatase Inhibitors

Letrozole

- Early studies mostly focused on CC resistant patients
- Letrozole seems as effective, if not superior to, clomiphene citrate in many studies
 - -*10 patients with PCOS who were resistant to CC or had thin (<5 mm) lining were given letrozole
 - -7 ovulated, 1 conceived, one biochemical pregnancy
 - Endo thickness prior to ovulation was 7-9 mm

*Mitwally et al, 2000

Letrozole

- Short half-life (about 48 hours)
 Should not affect cervical mucous
- Avoids peripheral antiestrogenic effects of CC (migraines, headaches, PMS-like symptoms)
 - Hot flashes, irritability, mood swings in only about 2% of patients

When Oral **OI** Therapy Fails...

- gonadotropin (GND) therapy
 - Expensive

 - -Invasive
- Is there an intermediate step?

Physicians might have proceeded with injectable

-High risk of ovarian hyperstimulation syndrom(OHSS) and multiple gestation

When Oral **OI** Therapy Fails

- Consider letrozole administration prior to GND therapy
- Letrozole may potentiate GND therapy by: -Resulting and rogenic environment in ovaries may sensitize FSH receptors (Mitwally and
 - Casper, 2002).

PART 2: PRINCIPLES OF **SUPEROVULATION**

Principles of Superovulation

In gonadotropin-treated cycles:

- - trigger shot

-Small (<10 mm) follicles need constant, exogenous FSH in order to grow and mature • FSH levels rise and stay elevated until

–Once follicles reach 10-12 mm, theca cells become receptive to LH stimulation

• Maturing follicle may become less dependent on FSH at this point

Standard IVF

Superovulation Meds

- only products
- of LH
- LdhCG is LH-only product

• Follistim, Gonal F and Bravelle are FSH-

Menopur contains 75 IU of FSH and 75 IU

PART 3: PITUITARY SUPPRESSION

GnRH Analogs

Physiologic

Agonist-Leuprolide /MF leuprolide

Antagonist-Ganirelix/Cetrotide

Agonist-Leuprolide/ MF leuprolide

GnRH Analogs

GnRH Analogs

Antagonist-Ganirelix/ Cetrotide

GnRH Analogs

Agonist

- Hypersecretion followed by desensitization
- LH suppression can be profound and mimic hypogonadotropic hypogonadism (HH)
- Can be used in "flare protocols"

- Competitive binding

Antagonist

• Immediate rapid *reversible* suppression of gonadotropin secretion (1-2 hours after drug administration)

PART 4: SUPEROVULATION MEDS

Common Medication Protocols

- Down regulation with GnRHa
- Suppression with GnRH antagonist
- Leuprolide acetate "flare" protocol
- Luteal estrace protocol (antag or flare)
- Clomid or aromatase inhibitors + agonist flare or antagonist + gonadotropins

IVF Stimulation Protocols Based on Expected Ovarian Response

Ovarian Reserve	Low	Average	High
BAFC	<8	8-15	15-30
AMH	< 1	1.0-3.5	>3.5
Special Concerns	Cycle Cancellation		OHSS
Typical Protocol	Let/MD Flare	Antagonist Down Reg (if need to tighten cohort)	Antagonist with agonist trigger
Meds	450 ⁺ IU FSH + LH (75-150)	300-450 IU FSH + 75 LH (add back if antagonist)	150-300 IU FSH + 75 LH (May decrease FS as follicles grow)

PART 5: TRIGGERING OVULATION IN IVF CYCLES

hCG

- Used to be only option for trigger
- hCG has the same biological actions as LH
- Clinical uses
 - -To augment follicular development (ldhCG)
 - -To cause ovulation
 - -To cause final maturation of oocyte
 - -For luteal support (no longer used for this)

Triggering ovulation in IVF cycles

- hCG commonly used -*Long ½ life sustains LH activity during (critical) implantation period (about 10 days).
 - LH crucial for adequate corpus lutea
 - -Contributes to the occurrence of OHSS
- Once antagonists approved for use, now have option of using GnRH agonist (GnRHa) for surge
 - -Suppressive effect of antagonist can be reversed immediately by administration of agonist
 - -Surge due to "flare effect"
 - -Shorter half-life: *LH activity for 48 hours,
 - then suppressive (more physiologic)

GnRH agonist (only) for surge: prospective, multicenter study*

- No significant differences in: # mature oocytes, # oocytes retrieved, fertilization rates, # of embryos transferred or embryo score(s)
- Lower ongoing pregnancy rate: 5.6% vs 41.7% (P=0.012) in the agonist group prompted discontinuation of the study
- No cases of OHSS in either group

Why are ongoing pregnancy rates so poor in the Agonist arm?

Authors hypothesized that:

- Agonist may cause irreversible luteolysis*
 - –When given agonist, both endogenous and exogenous LH were low* **
 - -HRT given in luteal phase may not be enough to counteract this* **
 - –A luteal phase (in a *stimulated* IVF patient) entirely dependent on exogenous HRT may not be sufficient

to counteract this* ** to counteract this* ** tirely dependent on

Agonist vs hCG for Surge: Conclusions

- GnRH agonist for surge prevents OHSS
 - and/or donors)
 - shouldn't be affected
- given

• Consider in high-risk groups (PCOS, Male factor,

• If freezing embryos, subsequent FET cycle

Agonist sufficient to mature and ovulate follicles

• Low pregnancy and implantation rates probably related to an ineffective corpus luteum if no hCG

PART 6: LUTEAL PHASE MEDS AND COQ10

Luteal Phase Meds

- Sometime necessary in non-IVF cycles
- Prog always necessary in stimulated and unstimulated (FET, Donor) cycles
 - Vaginal
 - IM
 - Oral not usually used due to first pass effect
- Estrogen often used in stimulated and always used in unstimulated cycles
 - In stimulated cycles might decrease chance of spotting

Window of Receptivity

- In a natural cycle, ovary and uterus in synchrony, so need to replicate this in stimulated cycle.
- It closes prematurely if:
 - P4 is elevated at trigger
 - P4 is administered too early

COQ10

Coenzyme-Q10

- Animal model
 - Injecting old, retired breeding mice with Co-Q10 (the equivalent of 600-800 mg) daily for a month:
- - follicles
 - Less reactive oxygen species
 - Ovaries 30% heavier
 - More eggs
 - More genetically normal offspring

More CoQ10 in ovary, ovarian vein,

Conclusions

- - Using letrozole prior to GND or IVF cycles may enhance ovarian response
- There are 2 options for pituitary suppression
- Using GnRH agonist trigger with hCG can help prevent OHSS, and patients need full luteal support
- embryo transfer.

• Oral medications first line for most patients Clomid-FDA approved (except for PCOS) but may have detrimental effects on lining

• The timing of progesterone start critical and "starts the clock" re: window of implantation and